

Pearson New International Edition

The Cosmic Perspective

Bennett Donahue Schneider Voit Seventh Edition

Pearson Education Limited

Edinburgh Gate

Harlow
Essex CM20 2JE
England and Associated Companies throughout the world
Visit us on the World Wide Web at: www.pearsoned.co.uk
© Pearson Education Limited 2014

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of the publisher or a licence permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any affiliation with or endorsement of this book by such owners.

PEARSON

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library

Table of Contents

1. A Modern View of the Universe
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 1
2. Discovering the Universe for Yourself
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 25
3. The Science of Astronomy
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 57
Supplementary Chapter: Celestial Timekeeping and Navigation Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 89
4. Making Sense of the Universe: Understanding Motion, Energy, and Gravity Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 117
5. Light and Matter: Reading Messages from the Cosmos
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 145
6. Telescopes: Portals of Discovery
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 173
7. Our Planetary System
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 199
8. Formation of the Solar System
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 225
9. Planetary Geology: Earth and the Other Terrestrial Worlds Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 247
10. Planetary Atmospheres: Earth and the Other Terrestrial Worlds Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 285
11. Jovian Planet Systems
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 325
12. Asteroids, Comets, and Dwarf Planets: Their Nature, Orbits, and Impacts Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 359
13. Other Planetary Systems: The New Science of Distant Worlds
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 387
Supplementary Chapter: Space and Time
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 421
Supplementary Chapter: Spacetime and Gravity
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 445
Supplementary Chapter: Building Blocks of the Universe Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 469
14. Our Star
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 491
15. Surveying the Stars
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 515
16. Star Birth
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 541
17. Star Stuff
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 563
18. The Bizarre Stellar Graveyard
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 589
19. Our Galaxy
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 613
20. Galaxies and the Foundation of Modern Cosmology
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 639
21. Galaxy Evolution
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 663
22. The Birth of the Universe
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 687
23. Dark Matter, Dark Energy, and the Fate of the Universe
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 711
Appendix: The Periodic Table of the Elements
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 741
Appendix: The 88 Constellations
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 743
Appendix: Star Charts
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 745
Glossary
Jeffrey O. Bennett/Megan O. Donahue/Nicholas Schneider/Mark Voit 751
Index 767

1 THE SCALE OF THE UNIVERSE

- What is our place in the universe?
- How big is the universe?

2 THE HISTORY OF THE UNIVERSE

- How did we come to be?
- How do our lifetimes compare to the age of the universe?

3 SPACESHIP EARTH

- How is Earth moving through space?
- How do galaxies move within the universe?

4 THE HUMAN ADVENTURE OF ASTRONOMY

- How has the study of astronomy affected human history?

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.
-T. S. Eliot

F:ar from city lights on a clear night, you can gaze upward at a sky filled with stars. Lie back and watch for a few hours, and you will observe the stars marching steadily across the sky. Confronted by the seemingly infinite heavens, you might wonder how Earth and the universe came to be. If you do, you will be sharing an experience common to humans around the world and in thousands of generations past.

Modern science offers answers to many of our fundamental questions about the universe and our place within it. We now know the basic content and scale of the universe. We know the age of Earth and the approximate age of the universe. And, although much remains to be discovered, we are rapidly learning how the simple ingredients of the early universe developed into the incredible diversity of life on Earth.

In this chapter, we will survey the scale, history, and motion of the universe. This "big picture" perspective on our universe will provide a base on which you'll be able to build a deeper understanding.

1 THE SCALE OF THE UNIVERSE

For most of human history, our ancestors imagined Earth to be stationary and located at the center of a relatively small universe. These ideas made sense at a time when understanding was built upon everyday experience. After all, we cannot feel the constant motion of Earth as it rotates on its axis and orbits the Sun, and if you observe the sky you'll see that the Sun, Moon, planets, and stars all appear to revolve around us each day. Nevertheless, we now know that Earth is a planet orbiting a rather average star in a vast universe.

The historical path to this knowledge was long and complex. The ancient belief in an Earth-centered (or geocentric) universe changed only when people were confronted by strong evidence to the contrary, and the method of learning that we call science enabled us to acquire this evidence. To start, it's useful to have a general picture of the universe as we know it today.

What is our place in the universe?

Take a look at the remarkable photo that opens this chapter. This photo, taken by the Hubble Space Telescope, shows a piece of the sky so small that you could block your view of it with a grain of sand held at arm's length. Yet it encompasses an almost unimaginable expanse of both space and time: Nearly every object within it is a galaxy filled with billions of stars, and some of the smaller smudges are galaxies so far away that their light has taken billions of years to reach us. Let's begin our study of astronomy by exploring
what a photo like this one tells us about our own place in the universe.

Our Cosmic Address The galaxies that we see in the Hubble Space Telescope photo are just one of several levels of structure in our universe. A good way to build context on these levels is to consider what we might call our "cosmic address," illustrated in FIGURE 1.

Earth is a planet in our solar system, which consists of the Sun, the planets and their moons, and countless smaller objects that include rocky asteroids and icy comets. Keep in mind that our Sun is a star, just like the stars we see in our night sky.

Our solar system belongs to the huge, disk-shaped collection of stars called the Milky Way Galaxy. A galaxy is a great island of stars in space, containing between a few hundred million and a trillion or more stars. The Milky Way is a relatively large galaxy, containing more than 100 billion stars. Our solar system is located a little over halfway from the galactic center to the edge of the galactic disk.

Billions of other galaxies are scattered throughout space. Some galaxies are fairly isolated, but many others are found in groups. Our Milky Way, for example, is one of the two largest among about 40 galaxies in the Local Group. Groups of galaxies with more than a few dozen members are often called galaxy clusters.

On a very large scale, galaxies and galaxy clusters appear to be arranged in giant chains and sheets with huge voids between them; the background of Figure 1 shows this largescale structure. The regions in which galaxies and galaxy clusters are most tightly packed are called superclusters, which are essentially clusters of galaxy clusters. Our Local Group is located in the outskirts of the Local Supercluster.

Together, all these structures make up our universe. In other words, the universe is the sum total of all matter and energy, encompassing the superclusters and voids and everything within them.

THINK ABOUT IT

Some people think that our tiny physical size in the vast universe makes us insignificant. Others think that our ability to learn about the wonders of the universe gives us significance despite our small size. What do you think?

Astronomical Distance Measurements Notice that Figure 1 is labeled with an approximate size for each structure in kilometers. In astronomy, many of the distances are so large that kilometers are not the most convenient unit. Instead, we often use two other units:

- One astronomical unit (AU) is Earth's average distance from the Sun, which is about 150 million kilometers (93 million miles). We commonly describe distances within our solar system in astronomical units.
- One light-year (ly) is the distance that light can travel in 1 year, which is about 10 trillion kilometers (6 trillion miles). We generally use light-years to describe the distances of stars and galaxies.

FIGURE 1 Our.cosmic address. These diagrams show key levels of structure in our universe.

Universe

approx size: $10^{4} \mathrm{~km}$

Be sure to note that a light-year is a unit of distance, not of time. Light travels at the speed of light, which is 300,000 kilometers per second. We therefore say that one light-second is about 300,000 kilometers, because that is the distance light travels in one second. Similarly, one light-minute is the distance that light travels in one minute, one light-hour is the distance that light travels in one hour, and so on. Mathematical Insight 1 shows that light travels about 10 trillion kilometers in one year, so that distance represents a light-year.

Looking Back in Time The speed of light is extremely fast by earthly standards. It is so fast that if you could make light go in circles, it could circle Earth nearly eight times in a single second. Nevertheless, even light takes time to travel the vast distances in space. Light takes a little more than 1 second to reach Earth from the Moon, and about 8 minutes to reach Earth from the Sun. Stars are so far away that their light takes years to reach us, which is why we measure their distances in light-years.

Consider Sirius, the brightest star in the night sky, which is located about 8 light-years away. Because it takes light 8 years to travel this distance, we see Sirius not as it is today, but rather as it was 8 years ago. The effect is more dramatic at greater distances. The Orion Nebula (FIGURE 2) is a giant cloud in which stars and planets are forming. It is located
about 1500 light-years from Earth, which means we see it as it looked about 1500 years ago-about the time of the fall of the Roman Empire. If any major events have occurred in the Orion Nebula since that time, we cannot yet know about them because the light from these events has not yet reached us.

The general idea that light takes time to travel through space leads to a remarkable fact:

The farther away we look in distance, the further back we look in time.

The Andromeda Galaxy (FIGURE 3) is about 2.5 million lightyears away, which means we see it as it looked about 2.5 million years ago. We see more distant galaxies as they were even further in the past. Some of the galaxies in the Hubble Space Telescope photo that opens the chapter are billions of light-years away, meaning we see them as they were billions of years ago.

SEF IT FOR YOUIRSEIF

The glow from the central region of the Andromeda Galaxy is faintly visible to the naked eye and easy to see with binoculars. Use a star chart to find it in the night sky. Contemplate the fact that you are seeing light that spent 2.5 million years in space before reaching your eyes. If students on a planet in the Andromeda Galaxy were looking at the Milky Way, what would they see? Could they know that we exist here on Earth?

Basic Astronomical Definitions

ASTRONOMICAL OBJECTS

star A large, glowing ball of gas that generates heat and light through nuclear fusion in its core. Our Sun is a star.
planet A moderately large object that orbits a star and shines primarily by reflecting light from its star. According to a definition adopted in 2006, an object can be considered a planet only if it (1) orbits a star, (2) is large enough for its own gravity to make it round, and (3) has cleared most other objects from its orbital path. An object that meets the first two criteria but has not cleared its orbital path, like Pluto, is designated a dwarf planet.
moon (or satellite) An object that orbits a planet. The term satellite is also used more generally to refer to any object orbiting another object.
asteroid A relatively small and rocky object that orbits a star. comet A relatively small and ice-rich object that orbits a star. small solar system body An asteroid, comet, or other object that orbits a star but is too small to qualify as a planet or dwarf planet.

COLLECTIONS OF ASTRONOMICAL OBJECTS

solar system The Sun and all the material that orbits it, including planets, dwarf planets, and small solar system bodies. Although the term solar system technically refers only to our own star system (solar means "of the Sun"), it is often applied to other star systems as well.
star system A star (sometimes more than one star) and any planets and other materials that orbit it.
galaxy A great island of stars in space, containing from a few hundred million to a trillion or more stars, all held together by gravity and orbiting a common center.
cluster (or group) of galaxies A collection of galaxies bound together by gravity. Small collections (up to a few dozen galaxies) are generally called groups, while larger collections are called clusters.
supercluster A gigantic region of space in which many groups and clusters of galaxies are packed more closely together than elsewhere in the universe.
universe (or cosmos) The sum total of all matter and energy-that is, all galaxies and everything between them.
observable universe The portion of the entire universe that can be seen from Earth, at least in principle. The observable universe is probably only a tiny portion of the entire universe.

ASTRONOMICAL DISTANCE UNITS

astronomical unit (AU) The average distance between Earth and the Sun, which is about 150 million kilometers. More technically, 1 AU is the length of the semimajor axis of Earth's orbit.
light-year The distance that light can travel in 1 year, which is about 9.46 trillion kilometers.

TERMS RELATING TO MOTION

rotation The spinning of an object around its axis. For example, Earth rotates once each day around its axis, which is an imaginary line connecting the North and South Poles.
orbit (revolution) The orbital motion of one object around another due to gravity. For example, Earth orbits the Sun once each year.
expansion (of the universe) The increase in the average distance between galaxies as time progresses.

FIGURE 2 The Orion Nebula, located about 1500 light-years away. The inset shows its location in the constellation Orion.

It's also amazing to realize that any "snapshot" of a distant galaxy is a picture of both space and time. For example, because the Andromeda Galaxy is about 100,000 light-years in diameter, the light we currently see from the far side of the galaxy must have left on its journey to us some 100,000 years before the light we see from the near side. Figure 3 therefore shows different parts of the galaxy spread over a time period of 100,000 years. When we study the universe, it is impossible to separate space and time.

The Observable Universe As we'll discuss in Section 2, astronomers estimate that the universe is about 14 billion years old. This fact, combined with the fact that looking deep into space means looking far back in time, places a limit on the portion of the universe that we can see, even in principle.

FIGURE 4 shows the idea. If we look at a galaxy that is 7 billion light-years away, we see it as it looked 7 billion years

FIGURE 3 The Andromeda Galaxy (M31). When we look at this galaxy, we see light that has been traveling through space for 2.5 million years.
ago*-which means we see it as it was when the universe was half its current age. If we look at a galaxy that is 12 billion light-years away (like the most distant ones in the Hubble Space Telescope photo), we see it as it was 12 billion years ago, when the universe was only 2 billion years old. And if we tried to look beyond 14 billion light-years, we'd be looking to a time more than 14 billion years ago-which is before the universe existed and therefore means that there is nothing to see. This distance of 14 billion light-years therefore marks the boundary (or horizon) of our observable universe-the portion of the entire universe that we can potentially observe. Note that this fact does not put any limit on the size of the
*Distances to faraway galaxies must be defined carefully in an expanding universe; distances like those given here are based on the time it has taken a galaxy's light to reach us (called the lookback time).

Far: We see a galaxy 7 billion light-years away as it was 7 billion years ago-when the universe was about half its current age of 14 billion years.

Farther: We see a galaxy 12 billion light-years away as it was 12 billion years ago-when the universe was only about 2 billion years old.

The limit of our observable universe:
Light from nearly 14 billion light-years away shows the universe as it looked shortly after the Big Bang, before galaxies existed.

Beyond the observable universe:
We cannot see anything farther than 14 billion light-years away, because its light has not had enough time to reach us.

FIGURE 4 interactive figure The farther away we look in space, the further back we look in time. The age of the universe therefore puts a limit on the size of the observable universe-the portion of the entire universe that we can observe, at least in principle.

COMMON MISCONCEPTIONS

The Meaning of a Light-Year

Y
ou've probably heard people say things like "It will take me light-years to finish this homework!" But a statement like this one doesn't make sense, because light-years are a unit of distance, not time. If you are unsure whether the term light-year is being used correctly, try testing the statement by using the fact that 1 light-year is about 10 trillion kilometers, or 6 trillion miles. The statement then reads "It will take me 6 trillion miles to finish this homework," which clearly does not make sense.
entire universe, which may be far larger than our observable universe. We simply have no hope of seeing or studying anything beyond the bounds of our observable universe.

MA) Scale of the Universe Tutorial, Lessons 1-3

How big is the universe?

Figure 1 put numbers on the sizes of different structures in the universe, but these numbers have little meaning for most people-after all, they are literally astronomical. Therefore, to help you develop a greater appreciation of our modern view of the universe, we'll discuss a few ways of putting these numbers into perspective.

The Scale of the Solar System One of the best ways to develop perspective on cosmic sizes and distances is to imagine our solar system shrunk down to a scale that would allow you to walk through it. The Voyage scale model solar system in Washington, D.C., makes such a walk possible (FIGURE 5). The Voyage model shows the Sun and the planets, and the distances between them, at one ten-billionth of their actual sizes and distances.

FIGURE 6a shows the Sun and planets at their correct sizes (but not distances) on the Voyage scale. The model Sun is about the size of a large grapefruit, Jupiter is about the size of a marble, and Earth is about the size of the ball point in a pen. You can immediately see some key facts about our solar system. For example, the Sun is far larger than any of the planets; in mass, the Sun outweighs all the planets combined by a factor of nearly 1000 . The planets also vary considerably in size: The storm on Jupiter known as the Great Red Spot (visible near Jupiter's lower left in the painting) could swallow up the entire Earth.

The scale of the solar system is even more remarkable when you combine the sizes shown in Figure 6a with the distances illustrated by the map of the Voyage model in FIGURE 6b. For example, the ball-point-size Earth is located about 15 meters (16.5 yards) from the grapefruit-size Sun, which means you can picture Earth's orbit as a circle of radius 15 meters around a grapefruit.

MATHEMATICALINISIGHT 1

How Far Is a Light-Year?

An Introduction to Astronomical Problem Solving

We can develop greater insight into astronomical ideas by applying mathematics. The key to using mathematics is to approach problems in a clear and organized way. One simple approach uses the following three steps:

Step 1 Understand the problem: Ask yourself what the solution will look like (for example, what units will it have? will it be big or small?) and what information you need to solve the problem. Draw a diagram or think of a simpler analogous problem to help you decide how to solve it.
Step 2 Solve the problem: Carry out the necessary calculations.
Step 3 Explain your result: Be sure that your answer makes sense, and consider what you've learned by solving the problem.
You can remember this process as "Understand, Solve, and Explain," or USE for short. You may not always need to write out the three steps explicitly, but they may help if you are stuck.

EXAMPLE: How far is a light-year?
SOLUTION: Let's use the three-step process.
Step 1 Understand the problem: The question asks how far, so we are looking for a distance. In this case, the definition of a light-year tells us that we are looking for the distance that light can travel in 1 year. We know that light travels at the speed of light, so we are looking for an equation that gives us distance from speed. If you don't remember this equation, just think of a simpler but analogous problem, such as
"If you drive at 50 kilometers per hour, how far will you travel in 2 hours?" You'll realize that you simply multiply the speed by the time: distance $=$ speed \times time. In this case, the speed is the speed of light, or $300,000 \mathrm{~km} / \mathrm{s}$, and the time is 1 year.

Step 2 Solve the problem: From Step 1, our equation is that 1 lightyear is the speed of light times one year. To make the units consistent, we convert 1 year to seconds by remembering that there are 60 seconds in 1 minute, 60 minutes in 1 hour, 24 hours in 1 day, and 365 days in 1 year. We now carry out the calculations:

$$
\begin{aligned}
1 \text { light-year }= & (\text { speed of light }) \times(1 \mathrm{yr}) \\
= & \left(300,000 \frac{\mathrm{~km}}{\mathrm{~s}}\right) \times\left(1 \mathrm{yr} \times \frac{365 \text { days }}{1 \mathrm{yr}}\right. \\
& \left.\times \frac{24 \mathrm{hr}}{1 \text { day }} \times \frac{60 \mathrm{miri}}{1 \mathrm{hr}} \times \frac{60 \mathrm{~s}}{1 \mathrm{~min}}\right) \\
= & 9,460,000,000,000 \mathrm{~km}(9.46 \text { trillion } \mathrm{km})
\end{aligned}
$$

Step 3 Explain your result: In sentence form, our answer is "One light-year is about 9.46 trillion kilometers." This answer makes sense: It has the expected units of distance (kilometers) and it is a long way, which we expect for the distance that light can travel in a year. We say "about" in the answer because we know it is not exact. For example, a year is not exactly 365 days long. In fact, for most purposes, we can approximate the answer further as "One light-year is about 10 trillion kilometers."

FIGURE 5 This photo shows the pedestals housing the Sun (the gold sphere on the nearest pedestal) and the inner planets in the Voyage scale model solar system (Washington, D.C.). The model planets are encased in the sidewalk-facing disks visible at about eye level on the planet pedestals. The building at the left is the National Air and Space Museum.

Perhaps the most striking feature of our solar system when we view it to scale is its emptiness. The Voyage model shows the planets along a straight path, so we'd need to draw each planet's orbit around the model Sun to show the full extent of our planetary system. Fitting all these orbits would require an area measuring more than a kilometer on a side-an area equivalent to more than 300 football fields arranged in a grid. Spread over this large area, only the grapefruit-size Sun, the planets, and a few moons would be big enough to see. The rest of it would look virtually empty (that's why we call it space!).

Seeing our solar system to scale also helps put space exploration into perspective. The Moon, the only other world on which humans have ever stepped (FIGURE 7), lies only about 4 centimeters ($1 \frac{1}{2}$ inches) from Earth in the Voyage model. On this scale, the palm of your hand can cover the entire region of the universe in which humans have so far traveled. The trip to Mars is more than 150 times as far as the trip to the Moon, even when Mars is on the same side of its orbit as Earth. And while you can walk from the Sun to Pluto in a few minutes on the Voyage scale, the New Horizons spacecraft that is making the real journey will have been in space nearly a decade when it flies past Pluto in July 2015.

a The scaled sizes (but not distances) of the Sun, planets, and two largest known dwarf planets.

b Locations of the Sun and planets in the Voyage model, Washington, D.C.; the distance from the Sun to Pluto is about 600 meters ($1 / 3$ mile). Planets are lined up in the model, but in reality each planet orbits the Sun independently and a perfect alignment never occurs.

FIGURE 6 interactive figure The Voyage scale model represents the solar system at one ten-billionth of its actual size. Pluto is included in the Voyage model, which was built before the International Astronomical Union reclassified Pluto as a dwarf planet.

FIGURE 7 This famous photograph from the first Moon landing (Apollo 11 in July 1969) shows astronaut Buzz Aldrin, with Neil Armstrong reflected in his visor. Armstrong was the first to step onto the Moon's surface, saying, "That's one small step for a man, one giant leap for mankind."

Distances to the Stars If you visit the Voyage model in Washington, D.C., you can walk the roughly 600 -meter distance from the Sun to Pluto in just a few minutes. How much farther would you have to walk to reach the next star on this scale?

Amazingly, you would need to walk to California. If this answer seems hard to believe, you can check it for yourself. A light-year is about 10 trillion kilometers, which becomes 1000 kilometers on the 1-to-10-billion scale (because 10 trillion $\div 10$ billion $=1000$). The nearest star system to our own, a three-star system called Alpha Centauri (FIGURE 8), is

FIGURE 8 This photograph and diagram show the constellation Centaurus, which is visible from tropical and southern latitudes. Alpha Centauri's real distance of 4.4 light-years is 4400 kilometers on the 1-to-10-billion Voyage scale.
about 4.4 light-years away. That distance is about 4400 kilometers (2700 miles) on the 1-to-10-billion scale, or roughly equivalent to the distance across the United States.

The tremendous distances to the stars give us some perspective on the technological challenge of astronomy. For example, because the largest star of the Alpha Centauri system is roughly the same size and brightness as our Sun, viewing it in the night sky is somewhat like being in Washington, D.C., and seeing a very bright grapefruit in San Francisco (neglecting the problems introduced by the curvature of Earth). It may seem

SPECIALTIOPIC

How Many Planets Are There in Our Solar System?

Until recently, children were taught that our solar system had nine planets. However, in 2006 astronomers voted to demote Pluto to a dwarf planet, leaving our solar system with only eight official planets (FIGURE 1). Why the change?

FIGURE 1 Notes left at the Voyage scale model solar system Pluto plaque upon Pluto's demotion to dwarf planet.

When Pluto was discovered in 1930, it was assumed to be similar to other planets. But we now know that Pluto is much smaller than any of the first eight planets and that it shares the outer solar system with thousands of other icy objects. Still, as long as Pluto was the largest known of these objects, most astronomers were content to leave the planetary status quo. Change was forced by the 2005 discovery of an object called Eris. Because Eris is slightly larger than Pluto, astronomers could no longer avoid the question of what objects should count as planets.

Official decisions on astronomical names and definitions rest with the International Astronomical Union (IAU), an organization made up of professional astronomers from around the world. The question of Pluto's status was voted upon during the IAU's 2006 meeting. The result was the new definition of "planet" that you see in the Basic Astronomical Definitions box, and the addition of the "dwarf planet" category to accommodate objects like Pluto and Eris.

Not all astronomers are happy with the new definitions, but for now they seem likely to hold. Of course, some people are likely to keep thinking of Pluto as a planet regardless of what professional astronomers say, much as many people still talk of Europe and Asia as separate continents even though both belong to the same land mass (Eurasia). So if you're a Pluto fan, don't despair: It's good to know the official classifications, but it's better to understand the science behind them.
remarkable that we can see the star at all, but the blackness of the night sky allows the naked eye to see it as a faint dot of light. It looks much brighter through powerful telescopes, but we still cannot see features of the star's surface.

Now, consider the difficulty of detecting planets orbiting nearby stars, which is equivalent to looking from Washington, D.C., and trying to find ball points or marbles orbiting grapefruits in California or beyond. When you consider this challenge, it is all the more remarkable to realize that we now have technology capable of finding such planets.

The vast distances to the stars also offer a sobering lesson about interstellar travel. Although science fiction shows like Star Trek and Star Wars make such travel look easy, the reality is far different. Consider the Voyager 2 spacecraft. Launched in 1977, Voyager 2 flew by Jupiter in 1979, Saturn in 1981, Uranus in 1986, and Neptune in 1989. It is now bound for the stars at a speed of close to 50,000 kilometers per hour-about 100 times as fast as a speeding bullet. But even at this speed, Voyager 2 would take about 100,000 years to reach Alpha Centauri if it were headed in that direction (which it's not). Convenient interstellar travel remains well beyond our present technology.

The Size of the Milky Way Galaxy The vast separation between our solar system and Alpha Centauri is typical of

COMMON MISCONCEPTIONS

> Confusing Very Different Things ost people are familiar with the terms solar system and galaxy, but few realize how incredibly different they are. collection of more than 100 billion star systems-so many that it would take thousands of years just to count them. Moreover, if you look at the sizes in Figure 1, you'll see that our galaxy is about 100 million times larger in diameter than our solar system. So be careful; numerically speaking, mixing up solar system and galaxy is a gigantic mistake!
the separations among star systems in our region of the Milky Way Galaxy. We therefore cannot use the 1-to-10-billion scale for thinking about distances beyond the nearest stars, because more distant stars would not fit on Earth with this scale. To visualize the galaxy, let's reduce our scale by another factor of 1 billion (making it a scale of 1 to 10^{19}).

On this new scale, each light-year becomes 1 millimeter, and the 100,000-light-year diameter of the Milky Way Galaxy becomes 100 meters, or about the length of a football field. Visualize a football field with a scale model of our galaxy centered over midfield. Our entire solar system is a microscopic dot located around the

MATHEMATICAL_INSIGHT 2

The Scale of Space and Time

Making a scale model usually requires nothing more than division. For example, in a 1 -to- 20 architectural scale model, a building that is actually 6 meters tall will be only $6 \div 20=0.3$ meter tall. The idea is the same for astronomical scaling, except that we usually divide by such large numbers that it's easier to work in scientific notation-that is, with the aid of powers of 10 .

EXAMPLE 1: How big is the Sun on a 1 -to-10-billion scale?

SOLUTION:

Step 1 Understand: We are looking for the scaled size of the Sun, so we simply need to divide its actual radius by 10 billion, or 10^{10}. The Sun's radius is $695,000 \mathrm{~km}$, or $6.95 \times 10^{5} \mathrm{~km}$ in scientific notation.

Step 2 Solve: We carry out the division:

$$
\begin{aligned}
\text { scaled radius } & =\frac{\text { actual radius }}{10^{10}} \\
& =\frac{6.95 \times 10^{5} \mathrm{~km}}{10^{10}} \\
& =6.95 \times 10^{(5-10)} \mathrm{km}=6.95 \times 10^{-5} \mathrm{~km}
\end{aligned}
$$

Notice that we used the rule that dividing powers of 10 means subtracting their exponents.

Step 3 Explain: We have found an answer, but because most of us don't have a good sense of what 10^{-5} kilometer looks like, the answer will be more meaningful if we convert it to units that will be easier to interpret. In this case, because there are $1000\left(10^{3}\right)$ meters in a kilometer and $100\left(10^{2}\right)$ centimeters in a meter, we convert to centimeters:

$$
6.95 \times 10^{-5} \mathrm{~km} \times \frac{10^{3} \mathrm{mf}}{1 \mathrm{~km}} \times \frac{10^{2} \mathrm{~cm}}{1 \mathrm{~m}}=6.95 \mathrm{~cm}
$$

We've found that on the 1 -to-10-billion scale the Sun's radius is about 7 centimeters, which is a diameter of about 14 centimetersabout the size of a large grapefruit.
EXAMPLE 2: What scale allows the 100,000 -light-year diameter of the Milky Way Galaxy to fit on a 100 -meter-long football field?

SOLUTION:
Step 1 Understand: We want to know how many times larger the actual diameter of the galaxy is than 100 meters, so we'll divide the actual diameter by 100 meters. To carry out the division, we'll need both numbers in the same units. We can put the galaxy's diameter in meters by using the fact that a light-year is about 10^{13} kilometers (see Mathematical Insight 1) and a kilometer is 10^{3} meters; because we are working with powers of 10 , we'll write the galaxy's 100,000 -lightyear diameter as $10^{5} \mathrm{ly}$.

Step 2 Solve: We now convert the units and carry out the division:

$$
\begin{aligned}
\frac{\text { galaxy diameter }}{\text { football field diameter }} & =\frac{10^{5} \mathrm{ly} \times \frac{10^{13} \mathrm{~km}}{1 \mathrm{ly}} \times \frac{10^{3} \mathrm{~m}}{1 \mathrm{~km}}}{10^{2} \mathrm{~m}} \\
& =10^{(5+13+3-2)}=10^{19}
\end{aligned}
$$

Note that the answer has no units, because it simply tells us how many times larger one thing is than the other.
Step 3 Explain: We've found that we need a scale of 1 to 10^{19} to make the galaxy fit on a football field.

20 -yard line. The 4.4 -light-year separation between our solar system and Alpha Centauri becomes just 4.4 millimeters on this scale-smaller than the width of your little finger. If you stood at the position of our solar system in this model, millions of star systems would lie within reach of your arms.

Another way to put the galaxy into perspective is to consider its number of stars-more than 100 billion. Imagine that tonight you are having difficulty falling asleep (perhaps because you are contemplating the scale of the universe). Instead of counting sheep, you decide to count stars. If you are able to count about one star each second, how long would it take you to count 100 billion stars in the Milky Way? Clearly, the answer is 100 billion $\left(10^{11}\right)$ seconds, but how long is that? Amazingly, 100 billion seconds is more than 3000 years. (You can confirm this by dividing 100 billion by the number of seconds in 1 year.) You would need thousands of years just to count the stars in the Milky Way Galaxy, and this assumes you never take a breakno sleeping, no eating, and absolutely no dying!

THINK ABOUT IT

Contemplate the fact that it would take more than 3000 years just to count out loud the stars in our galaxy, and that each star is a potential sun for a system of planets. How does this perspective affect your thoughts about the possibilities for finding life—or intelligent life—beyond Earth? Explain.

The Observable Universe As incredible as the scale of our galaxy may seem, the Milky Way is only one of roughly 100 billion galaxies in the observable universe. Just as it would take thousands of years to count the stars in the Milky Way, it would take thousands of years to count all the galaxies.

Think for a moment about the total number of stars in all these galaxies. If we assume 100 billion stars per galaxy, the total number of stars in the observable universe is roughly 100 billion $\times 100$ billion, or $10,000,000,000,000,000,000,000$ $\left(10^{22}\right)$. How big is this number? Visit a beach. Run your hands through the fine-grained sand. Imagine counting each tiny grain of sand as it slips through your fingers. Then imagine counting every grain of sand on the beach and continuing to count every grain of dry sand on every beach on Earth (see Mathematical Insight 3). If you could actually complete this task, you would find that the number of grains of sand is comparable to the number of stars in the observable universe (FIGURE 9).

THINK ABOUT IT

Overall, how does visualizing Earth to scale affect your perspective on our planet and on human existence? Explain.

MATHEMATICAL_INSIGHT 3

Order of Magnitude Estimation

In astronomy, numbers are often so large that an estimate can be useful even if it's good only to about the nearest power of 10 . For example, when we multiplied 100 billion stars per galaxy by 100 billion galaxies to estimate that there are about 10^{22} stars in the observable universe, we knew that the "ballpark" nature of these numbers means the actual number of stars could easily be anywhere from about 10^{21} to 10^{23}. Estimates good to about the nearest power of 10 are called order of magnitude estimates.

EXAMPLE: Verify the claim that the number of grains of (dry) sand on all the beaches on Earth is comparable to the number of stars in the observable universe.

SOLUTION:

Step 1 Understand: To verify the claim, we need to estimate the number of grains of sand and see if it is close to our estimate of 10^{22} stars. We can estimate the total number of sand grains by dividing the total volume of sand on Earth's beaches by the average volume of an individual sand grain. Volume is equal to length times width times depth, so the total volume is the total length of sandy beach on Earth multiplied by the typical width and depth of dry sand. That is,

$$
\begin{aligned}
\text { total sand grains } & =\frac{\text { total volume of beach sand }}{\text { average volume of } 1 \text { sand grain }} \\
& =\frac{\text { beach length } \times \text { beach width } \times \text { beach depth }}{\text { average volume of } 1 \text { sand grain }}
\end{aligned}
$$

We now need numbers to put into the equation. We can estimate the average volume of an individual sand grain by measuring out a small
volume of sand, counting the number of grains in this volume, and then dividing the volume by the number of grains. If you do this, you'll find that a reasonable order of magnitude estimate is one-tenth of a cubic millimeter, or $10^{-10} \mathrm{~m}^{3}$, per sand grain. We can estimate beach width and depth from experience or photos of beaches. Typical widths are about 20 to 50 meters and typical sand depth is about 2 to 5 meters, so we can make the numbers easy by assuming that the product of beach width times depth is about 100 square meters, or $10^{2} \mathrm{~m}^{2}$. The total length of sandy beach on Earth is more difficult to estimate, but you can look online and find that it is less than about 1 million kilometers, or $10^{9} \mathrm{~m}$.

Step 2 Solve: We already have our equation and all the numbers we need, so we just put them in; note that we group beach width and depth together, since we estimated them together in Step 1:

$$
\begin{aligned}
\text { total sand grains } & =\frac{\text { beach length } \times(\text { beach width } \times \text { beach depth })}{\text { average volume of } 1 \text { sand grain }} \\
& =\frac{10^{9} \mathrm{~m} \times 10^{2} \mathrm{~m}^{2}}{10^{-10} \mathrm{~m}^{3}} \\
& =10^{[9+2-(-10)]}=10^{21}
\end{aligned}
$$

Step 3 Explain: Our order of magnitude estimate for the total number of grains of dry sand on all the beaches on Earth is 10^{21}, which is within a factor of 10 of the estimated 10^{22} stars in the observable universe. Because both numbers could easily be off by a factor of 10 or more, we cannot say with certainty that one is larger than the other, but the numbers are clearly comparable.

